DsbG, a protein disulfide isomerase with chaperone activity.

نویسندگان

  • F Shao
  • M W Bader
  • U Jakob
  • J C Bardwell
چکیده

DsbG, a protein disulfide isomerase present in the periplasm of Escherichia coli, is shown to function as a molecular chaperone. Stoichiometric amounts of DsbG are sufficient to prevent the thermal aggregation of two classical chaperone substrate proteins, citrate synthase and luciferase. DsbG was also shown to interact with refolding intermediates of chemically denatured citrate synthase and prevents their aggregation in vitro. Citrate synthase reactivation experiments in the presence of DsbG suggest that DsbG binds with high affinity to early unstructured protein folding intermediates. DsbG is one of the first periplasmic proteins shown to have general chaperone activity. This ability to chaperone protein folding is likely to increase the effectiveness of DsbG as a protein disulfide isomerase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Vivo Substrate Specificity of Periplasmic

In Escherichia coli, a family of periplasmic disulfide oxidoreductases catalyzes correct disulfide bond formation in periplasmic and secreted proteins. Despite the importance of native disulfide bonds in the folding and function of many proteins, a systematic investigation of the in vivo substrates of E. coli periplasmic disulfide oxidoreductases, including the well characterized oxidase DsbA, ...

متن کامل

Laboratory evolution of one disulfide isomerase to resemble another.

It is often difficult to determine which of the sequence and structural differences between divergent members of multigene families are functionally important. Here we use a laboratory evolution approach to determine functionally important structural differences between two distantly related disulfide isomerases, DsbC and DsbG from Escherichia coli. Surprisingly, we found single amino acid subs...

متن کامل

Computation-directed identification of OxyR DNA binding sites in Escherichia coli.

A computational search was carried out to identify additional targets for the Escherichia coli OxyR transcription factor. This approach predicted OxyR binding sites upstream of dsbG, encoding a periplasmic disulfide bond chaperone-isomerase; upstream of fhuF, encoding a protein required for iron uptake; and within yfdI. DNase I footprinting assays confirmed that oxidized OxyR bound to the predi...

متن کامل

Converting a Sulfenic Acid Reductase into a Disulfide Bond Isomerase

AIMS Posttranslational formation of disulfide bonds is essential for the folding of many secreted proteins. Formation of disulfide bonds in a protein with more than two cysteines is inherently fraught with error and can result in incorrect disulfide bond pairing and, consequently, misfolded protein. Protein disulfide bond isomerases, such as DsbC of Escherichia coli, can recognize mis-oxidized ...

متن کامل

Functional and evolutionary analyses of Helicobacter pylori HP0231 (DsbK) protein with strong oxidative and chaperone activity characterized by a highly diverged dimerization domain

Helicobacter pylori does not encode the classical DsbA/DsbB oxidoreductases that are crucial for oxidative folding of extracytoplasmic proteins. Instead, this microorganism encodes an untypical two proteins playing a role in disulfide bond formation - periplasmic HP0231, which structure resembles that of EcDsbC/DsbG, and its redox partner, a membrane protein HpDsbI (HP0595) with a β-propeller s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 18  شماره 

صفحات  -

تاریخ انتشار 2000